Polynomial Division

Use the example below and review the algorithm for long division:

$$
\left(2 x^{4}-x^{3}+7 x^{2}+5\right) \div\left(2 x^{2}+1\right)
$$

Division of Polynomials:
Let $p(x)$ and $d(x)$ be polynomials such that $d(x) \neq 0$. Then there are unique polynomials $q(x)$ and $r(x)$, called the quotient and the remainder, respectively, such that
$\frac{p(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}$
or
$p(x)=q(x) d(x)+r(x)$
If $r(x)=0$ then q and p are factors of the polynomial p

Use the rational number $\frac{212}{3}$ and division to understand the concepts of dividend, divisor, quotient, and remainder.

Use the rational expression $\frac{2 x^{4}-x^{3}+7 x^{2}+5}{2 x^{2}+1}$ and division to understand the concepts of dividend, divisor, quotient, and remainder.
Linear Factor Theorem:
The number k is a factor of a polynomial $p(x)$ if and only if the linear polynomial $x-k$ is a factor of p. That means, if k is a zero of $p(x)$ then:

1) $p(x)=(x-k) q(x)$ for some polynomial q.
2) $p(k)=0$
3) k is an x-intercept of the graph of p.
4) If $p(x)$ is divided by $(x-k)$ then the remainder is $p(k)$.

Example: Show that 2 is a zero of the function $f(x)=x^{3}-2 x-4$ What other things can be determined about the function f based on this information?

Example: Show that $2+\sqrt{3}$ is a zero of the function $f(x)=x^{2}-4 x+1$
What other things can be determined about the function f based on this information?

Review synthetic division by dividing the following:

$$
\frac{3 x^{3}-2 x^{2}+2}{x+2}
$$

Divide: $\left(2 x^{5}+x^{4}-18 x^{3}-9 x^{2}+16 x+8\right) \div\left(x+\frac{1}{2}\right)$

